三角函數角度公式

2016-10-14

CC0 Photo by Nadine Shaabana (Unsplash Photo ID: fvceZyC7ihI)

之前高二有在學三角函數,當時無聊就將我們數學老師的講義內容稍微電子化了一下,把三角函數所用到的重要公式用 LaTEX 語法寫在 Markdown 裡,作為數學筆記,如果有需求的可以來看看。

差角公式與和角公式

$cos$

$cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$
$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$

$sin$

$sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$
$sin(\alpha - \beta) = sin\alpha cos\beta - cos\alpha sin\beta$

$tan$

$tan(\alpha + \beta) = \frac {sin(\alpha+\beta)} {cos(\alpha+\beta)} = \frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$

$tan(\alpha - \beta) = \frac{tan\alpha+tan(-\beta)}{1-tan\alpha tan(-\beta)}=\frac {tan\alpha-tan\beta}{1+tan\alpha tan\beta}$

二倍角公式

$sin2\theta =2sin\theta cos\theta =\frac{2tan\theta}{1+tan^2\theta}$

$cos2\theta = cos^2\theta - sin^2\theta=1-2sin^2\theta=2cos^2\theta-1=\frac {1-tan^2\theta}{1+tan^2\theta}$

$tan2\theta=\frac {2tan\theta}{1-tan^2\theta}$

三倍角公式

$sin3\theta=sin(2\theta+\theta)=3cos\theta-4sin^3\theta$

$cos3\theta=cos(2\theta+\theta)=4cos^3\theta-3cos\theta$

半角公式

推導

由二倍角公式 $cos2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$,移項化簡可得 $sin^2\alpha=\frac{1-cos2\alpha}2$,$cos^2\alpha=\frac{1+cos2\alpha}2$

令 $\alpha=\frac \theta 2$ 帶入上述兩式可得

$sin \frac \theta 2 = \pm \sqrt {\frac {1-cos\theta}2}$

$cos \frac \theta 2 = \pm \sqrt {\frac {1+cos\theta}2}$

再由商數關係式可得 $tan\frac \theta 2=\frac {sin \frac \theta 2}{cos \frac \theta 2}=\pm \sqrt{\frac{1-cos\theta}{1+cos\theta}}$

公式

$sin\frac\theta 2 = \pm \sqrt {\frac {1-cos\theta}2}$

$cos\frac\theta2 = \pm \sqrt {\frac {1+cos\theta}2}$

$tan\frac\theta 2=\pm \sqrt{\frac{1-cos\theta}{1+cos\theta}}$

Photo by Nadine Shaabana on Unsplash

分類: #數學

留言: